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Boltzmann's kinetic equation (*)
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1s a complex integro-differential equation. At present, it 1s applicable
only for the solutions of a very limited class of problems. Therefore, even
highly degenerate solutions of this equation are of interest. The simplest
exact solutions are those at which the collision integral J vanishes.
These are the so-called locally Maxwelllian solutions

r=v(mmr) oo (—5F)  (e=~5—u @)

Maxwell himself [1 to 3] has obtained stationary solutions of the type of
(2), i.e. solutions satisfying the condition af/3t = O . In 1949 Grad [4]
found all the locally Maxwelllan solutions of Boltzmann's equation for the
case where external forces are absent, l.e, for the condition ¢,= 0 . We
shall show what conditions external fields must satisfy in order that solu-
tions of Equation (1) having the form of (2) should exist, and also what
solutions are posslble for those filelds.

Locally Maxwellian functions may be represented in a form somewhat differ-
ent from (2),

Inf=1 + 18 + 1.8 (3)
The connection between parameters in (3) and (2) is as follows:
kT 1 Ti m \7 12
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Substituting (3) in (1), divided first by f , and equating to zero the
coefficlents of the various powers of Eg,, we obtain the system of equations

Yo 7, o
2t T &m=0, —aT+2T‘gi+a_xi=0

(5)
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*) Here and later a repeated index indicates summation.
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First, we note that, substiltuting into this Equations (4), i1t is easy to
show the equivalence of this system of equations with Euler's equations
together with the condition that the stress tensor and temperature gradient
are zsfo. In other words, solution of Euler's equatlons, which are, at the
same time, solutlions of the Navier~Stokes equations, define a iccally Max-
wellian distribution function which satisfies Boltzmann's equation,

Let us lnvestlgate the solutions of the system of Equations . Differ-
entiating the third equation of this system gith respegt to xxf5%hen permu~

:én%iigdices cyclically, and adding together the resulting three equations,
n

%y,
9r 8 7y =
It follows that !
Ti (x,t) = a; ® + bi; () z; (6)

Putting this into {5), we find that

— by for Lsh)

bij () = i or L3=]
— s ] 0L for o7

That is, Equation (6) may be written in the form (*)
Yy O =a)— 71 Ox+ [e@ Xx] (n

Equation (7) means that the motion of the gas is a superposition of three
mozions: solld body-like rotation, radisl expansion, and translatlonal
motion.

We now simplify the equations defining v, and g . We write the first
two equations of system ?5) in vector form
) oy
2 T (&1n=0, 3r T 21g +gradvo=0 (8)
Applying the rot operator %o the last equation, substituting into it
expression (7) and assuming temperature to be finlte, we obtain

i .
rot g (x, t) = "%((Z))' or (X, ) =grad ¥ (x, t) w%[%(%l Xx} (9

Putting (9) into the second equation of system (8), we obtaln
grad Ry, ¥ X, 1) + 1o (X, 1) =75 @) x— a" (©)
and, integrating, find

Yo (X, ) = —27, (¥ (x, 1) + 0.5, () — (& (1), x) + b (B) (10
where 2(t) is an arbitrary function. Putting (10} in the first equation of
(8), we have

a‘y . e . L3 ) m‘
_2y4—-3—t~ “+ (grad ¥, y) = 27,'¥ — 0.574™22 J- (a7, X)—b'(t) 4 0.5 ([—,1;;“ X x] s V) {11}

Here y 1is defined by Expression (7).

Thus, the density, velocity, and temperature are determined by Expressions
(8),(7),{10) and the last equation of system (5), while the form of the
potential consistent with a locally Maxwelllan flow and the connection
between the potential and the parameters defining p , W and 7T are found
from Equation (11). Equation ?11) is linear in first order partial deriva-
tives. I1ts general golution 1is the sum of a particular solutlion of the non-~
nomogeneous equation and the general solution of the homogeneous equation
§ = ¥,+ ¥, . Here, ¥,, the particular solution of the nonhomogeneous equa=
tion 1113, has the form

¥y (% ) = py; (Dege; + g Oz -+ r @) (12)

*#) A dot over a letter means, as usual, differentiation with respect to
time.
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The connectlon between p,,, 9, , r and the parameters of the motlon,
w , & , yao, b are found by substituting (12) into (11) and equating to zero
the coefficients of the different powers of x,. We note that, of the ten
coefficlents defining v,, only eight are independent; v, 1s the general
solution of Equation

v
— 274 a_: + (grad ¥s, y) = 274 ¥ (13)

From the theory of first-order equations it follows that ¥, is determined
from Equation V (¢, ¢3, ¢y, ¢)) = 0, where ¥ 1s an arbitrary function and ¢,,
%a, 03> 04 are first integrals of the characteristic system of Equations

13), ﬁ _ dxg . d{L‘s _ dt o d“Fz
T1 T2 13 —21a 274 ¥a (14)

Consequently, ¥, has the form W= y4'¥s3 (%, ¢ c;), where v, is an arbi-
trary function of first integrals of system (14), not.including the last
equation. This means that ¥, 1s conserved on certain lines in the four-
dimensional space (X, ¢) ; these turn out to be the trajectories of points
having the velocities (y,— 2y,) in that space.

Thus, in the case of external forces which depend on. the coordlnates and
time, a locally Maxwellian flow may exist only if the forces are composed of
two terms: a potentlial one and a rotational one. The second term has the
form [o(t) X x], where the function ¢ (f) characterizes the connection between
the temperature and angular acceleration. The potential, however, 1s not an
arbitrary function of the coordinates and time, but 1s determined in an arbi-
trary way by only three independent parameters. These parameters are found
from system (13). The parameters of the motion, as has been stated, are
determined from Equation (11).

For example, we shall .consider the case of radical expansion, that is,

the case where a =@ =rotg(x,?) = 0. Then y = —7,X, and system (1%) be-
comes
dx; _ dxsg _ dxs _ dt _ d¥s
— 16T —TdTz —TaTs —21a 214

v, — 1 ¥ ( 22 21 3'1)
T %) CP\Ta(f) ? w ’ ms
where V¥, 1s an arbltrary function. The function V¥, 1n this example is

= L— 22
1 814"+ 4Ta

This means that only the potential, having the form

¥

i z2 oz
Y =105+ o o (e, 2, 2)
=102 3 50 = =
corresponds to a locally Maxwellian solution of Boltzmann's equation; where
© 1s a negative and ¢ an arbitrary function, while S 1s determined as

P
T = g5 49

Thus, we see that the potential in this case may be given as an arbitrary
function of only three parameters: two angular parameters, and either a time
or a radius. If we specify ¥ as a function of time, then the dependence on
radius 1s also determined and, conversely, speclifying ¥ as a function of the
coordinates we determine the varlation of the potential with time. For a given
potential, we have the following expressions for the temperature, velocity,

d d ity:
e demty N __ v
m T’ u 29 (1) *

. 11 ¥z . ‘p-z (t) e
p(x, 1) = (— W) exp [—Z(P(t)‘l‘(x, t)4+0.5¢™ () 2* — W]

Up to now, we have been considering the case where the internal forces
are specified as functlons of time and radius. Before considering a more
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restricted class of solutions for g = g(X) , we note that the case ¥ = ¥{(%)
is entirely equivalent to the case ¥ = 0 . In fact, from Equation {(11) we
see at once that w =0, 1.e. g = O, and, therefore, the parameters of the
motion do not depend on the potential.

We shall now consider in more detail the case g = g(x) and show that for
this case the problem of finding the form of the internal forces and the
flows determined by those forces can be solved completely. Since g = g(x),
Equation {9) takes the form

g(x)=grad ¥ (x) — 0.5 [Q X x] (& is a constant vector)
Therefore,
ol =T+ v, (T (t) 18 the initial of ()
Equation (11) takes the form
(grad ¥, v) = 29, ¥ — 0.5p,"2 + (a", x) — & + 0.5T (1) | [Q X x] ]2 +
+0.5([2 X x], a + [og, x]) (15)

As already stated, the case ¥ = const 1s entirely equivalent to the case
¥ = 0. Moreover,

4" — Q= 0, 1o =0
%.e. we obtain Grad's solution [#]. Let W=£0 and ©;==0; then (since
:T“#O) Q:a’:O, Tg“zbuzo
and we have
(grad ¥, v) = 27,'V, y=a— 17,X+ [ey X x] =a + 4x (16}

Here, 4 1is a constant matrix, The function v 18 determined from the
characteriatic system

dx1 - dxz d:l:a . dl?

n o1z 1 Y
Going over to a new variable y=Xx1+A7la, and then to a system of coor-

dinates in which one of the axes 1s along the direction of the constant vec-
tor w, , we reduce system (17) to

(17)

dz; dn _ dzy _dz d¥ 8
Ty — Y421 — @e2  — YaZ3+ @21 — 1538 27 ¥ (18)

Then
v — oy (19)

where Y, satisfies Equation (grad ¥s, ¢') = 0, that 1s, v, 1s constant along
the trajectory of a point moving with the velocity vy’ . ?’m other words, v,
is an arbitrary function of the first integrals of the first two equations
of system {18)., These integrals are

2% i) 1<Zz Zl)
=g A SR — e | ] 242 72l = e
22 f 22 M P tan™ 5 P 2 n| 2?4 27 | 2

Thus, in this case (V¥ (x)zE=const, 0;==0) Y 1s constant, and vy, and v,
change 11near1g with time. The dependence of the coordinates is gliven by
Expressions (16) and (10). If we set y,°= O , we obtain Maxwell's solutions
[1 and 2].

If Wwe= 0 , then all the cocefficlents in Equation {(15) which depend on
time must be proportional to each other,

‘(¢ b (e L (
() = __’]’41’()= é) =aa(i)

(from the condition of the finiltude of mass we obtain vy > O). Then the
potential 1is determlned as Y = ¥,+ ¥, , where
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¥, = piEiT; T 9z, +r
(now Pyys, 4, and T are constant), and ¥, is determined from Equation
(grad ¥y, 0 + 1x + 12 [Q X x]) = — 27¥,

In this case we find the function ¥, in the same way as for the case
Wwe# O .

Thus, for ‘we= O , that is, in the absence of a constant component of
rotation, osclillatory solutions are posslble for vy,, vy and y, . The den-
sity, velocity and temperature are found, as before, from the Expressions (4).

To sum up the above, we state that for internal force flelds independent
of time, thelr form can be determined and the flows corresponding to those
fields found. The solution may be devided into two classes: for constant
rotation of the gas, the parameters y, and yo are llnear 1n time; 1n the
absence of a constant component of angular velocity, oscillatory solutilons
for y , v« &and vy, are possible.

The calculations can be significantly simplified if one considers sepa-
rately translational motion, radial expansion, or solid body=-like rotation
of the gas.

In conclusion, the author thanks M.N.Kogan for suggesting the problem and
for discussions.
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