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Boltzmann's kinetic equation (*) 

is a complex integro-differential equation. At present, It is applicable 
only for the solutions of a very limited class of problems. Therefore, even 
highly degenerate solutions of this equation are of interest. The simplest 
exact solutions are those at which the collision integral J vanishes. 
These are the so-called locally Maxwellian solutions 

f=P(&+!"P(-~) (c=%-U) (2) 

Maxwell hlmself [l to 31 has obtained stationary solutions of the type of 
(2), I.e. solutions satisfying the condition &f/at - 0 . In 1949 Grad [4] 
found all the locally Maxwellian solutions of Boltzmann's equation for the 
case where external forces are absent, i.e. for the condition O,= 0 . We 
shall show what conditions external fields must satisfy in order that solu- 
tions of Equation (1) having the form of (2) should exist, and also what 
solutions are possible for those fields. 

Locally Maxwellian functions may be represented In a form somewhat differ- 
ent from (2), 

In f = 70 + 7i5i + IrP (3) 

The connection between parameters In (3) and (2) Is as follows: 

Substituting (3) in (l), divided first by .? , and equating to zero the 
coefficients of the various powers of si, we obtain the system of equations 

(5) 

*) Here and later a repeated Index indicates summation. 
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First, we note that, substituting into this Equations (4), it 1s easy to 
show the equivalence of this system of equations with Euler's equations 
together with the condition that the stress tensor and temperature gradient 
are zero. In other words, solution of Euler's equations, which are, at the 
same time, SOlUtlOnS of the Navier-Stokes equations, deflne a locally Max- 
welllan dlstrlbutlon function which satisfies Boltzmann*s equation. 

Let us investigate the solutions of the system of Equations (5). Dlffer- 
entlatlng the third equation of thls system with respect to x~, then permu- 
ting Indices cyclically, and adding together the resulting three equations, 
we find 

@Ti 

It folIowS that 
aJk=@ 

Ti !s, t, = ai (t) 5 bij (4~j 

Futtlng this into (s)., we find that 

(6) 

bij (t) =f 
1 

- bji ior i+j 

--ay4/at far i = i 

That is, Equation (6) may be written in the form (*) 

Y (x, 2) = a 0) - r&. (Qx + [o (t) x xl (7) 

Equation (7) means that the motion of the gas is a S;lperPOSltlOn of three 
motions: solid body-like rotation, radial expansion, and translational 
motion. 

We now simplify the e uatlons deflnlng y0 and g . We write the first 
two equations of system 4 5) in vector form 

2 + (Et, 7) =0 t $ + 2pg + grad TO = 0 (81 
Applying the rot operator to the last equation, Substituting into lt 

expression (7) and assuming temperature to be flnlte, we obtain 

0’ w rotg(x, t) = - - 
T4 (t) 

OI g (x, t) = grad Y (x, 1) -+pj$ xx] (9) 

Futtlng (9) into the second equation of system (8), we obtain 

grad (2y, (t)y (x, f) + r. (x, 9) = rS:: (t) x - a’ 0) 
and, integrating, find 

Yo (x3 f) = -3, WY (x, t) + o*su", ft)s - (a* (t), xf + b it) (I@1 

where 
(W, 

b(t) is an arbitrary function. Putting (10) in the first equation of 
we have 

- 2% g $- (grad Y, y) = 2~s.Y - 0.5y~“‘x~ + (a", x) - b’(t) +0.5 [[$ x x] f v) (11j 

Here v 1s defined by Expression (7). 

Thus, the density, velocity, and temperature are determined by Expressions 
(4~,(7),(10) and the last equation of system (5), whlfe the form of the 
potential consistent wlth a locally Maxwellian flow and the connection 
between the potential and the 
;if;,Equatlon (11). 

arameters defining p , 11 and T are found 
Equation 11) 1s linear in first order partial derlva- 

. Its general. solution Is the sum of a particular solution of the non- 
homogeneous equation and the general solution of the homogeneous equation 

the particular solution of the nonhomogeneous equa- 
has the form 

Y', (x, t) = pii (t)zizj + gi (t)ri 4 r (t) (12) 

-- 

l ) A dot over a letter means, as usual, differentlatlon with respect to 
time. 
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The connection between pI, , a, r and the parameters of the motion, 
m , g > Y4> b are found by substlt~tlng (12) Into (11) and equating to zero 
the coefficients of the different powers of x,. We note that, of the ten 
coefficients defining yI, only eight are independent; ya Is the general 
solution of Equation 

- 2’rd ‘2 + (grad Yz, y) = 2*/d’ YY~ (13) 

From the theory of first-order equations It follows that va is determined 
from Equation v (Cl, C,, Cg, C4) = 0, where V Is an arbitrary function and cl, 

%)'3"' O4 
are first integrals of the characteristic system of Equations 

dxl dxz dxs dt dyz -=- =-=- 
?-1 ra =ra - 274 2T4’ y2 (14) 

Consequently, Ya has the form YZ = yo-"J'y, tC5, C6, CT), where yS 1s an arbl- 
trary function of first Integrals of system (14), not.includlng the last 
equation. This means that ys Is conserved on certain lines In the four- 
dimensional space (x, t) ; these turn out to be the trajectories of points 
having the velocities (y,-2y4) In that space. 

Thus, In the case of external forces which depend on the coordinates and 
time, a locally Maxwellian flow may exist only If the forces are composed of 
two terms: a potential one and a rotational one. The second term has the 
form [u(t) X x], where the function o(t) characterizes the connection between 
the temperature and angular acceleration. The potential, however, Is not an 
arbitrary function of the coordinates and time, but is determined in an arbi- 
trary Way by only three Independent parameters. 
from system (13). 

These parameters are found 
The parameters of the motion, as has been stated, are 

determined from Equation (11). 

For example, we shall.consld r the case of radical expansion, that is, 
the case where a = 61 = rot g (x, t = 0. 9 Then r = -rp'x, and system (14) be- 
comes 

drl dma dxa dt dYa 
-_ 

z-e. 
- T4 xa -yr4xs -- =- - 2r4 2rr'Ya 

where Y3 Is an arbitrary function. The function yl In this example Is 

r4”’ 
y1 = 8~0’ + 4~4 2= 

Thls means that only the potential, having the form 

1 
y (x9 4 = f (1) xa + cp @ ( x8 Xl x1 

cp * -g- ) g 1 
corresponds to a locally Maxwelllan solution of Boltsmann's equation; where 
cp Is a negative and 0 an arbitrary function; while / 1s determined as 

0 
. . . 

f@)=8,$+4cp 

Thus, we see that the potential in this case may be given as an arbitrary 
functloh of only tnree parameters: two angular parameters, and either a time 
or a radius. If we specify Y as a function of time, then the dependence on 
radius Is also determined and, conversely, specifying y as a function of the 
coordinates we determine the variation of the potential with time. For a given 
potential, we have the following expressions for the temperature, velocity, 
and density: 

II- Q’ ($1 
--xgFp 

p(x, t) = (- +)%exp [-2q(t)Y(x, t)+oSqY(t)d- ‘z;i;J] 

Up to now, we have been considering the case where the internal forces 
are specified as functions of time and radius. Before considering a more 



restricted class of solutions for 8 = PI(*) 
is entirely equivalent to the case Y 9 0 . 

, we note that the case Y - y(t) 

see at once that UPS 0 i.e. &=O, 
In fact, from Equation (11) we 

motion do not depend on the potential. 
and, therefore, the parameters of the 

We shall now consider in more detail the case 
this case the problem of finding 

g = e(X) and show that for 
the form of the internal forces and the 

flows determined by those forces 
Equation (9) takes the form 

can be solved completely. Since g = g(x), 

Therefor: (x) = grad ?F (x) - 0.5 In x XI (S& is a constant vector) 

f 

0 (t) = r (t)n + 00 (F (t) Is the initial of r4 (t)) 

Equation (11) takes the form 
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(grad Y?, y) = 2+r4' Y - 0.5~34"~~~ -I- (a", x)- b' -I- 0.5r (tf ] IQ X xl.Ja -I- 

-t- 0.5 (IfA x xl, a -i- [e,, xl) ($5) 

As already stated, the case Y = const 
Moreover, 

is entdrely equivalent to the case 
Y=O. 

a" = B = 0, 74 .* = 0 

i.e. we obtain Grad's solution [43. Let Y f 0 and oo# 0 ; then (since 
r* = 74 * 0) 

$2 = a’= 0, yr” = b” zz.z 0 

and we have 

(grad Y, y) = 2y,'Y, y~a-~4x+[~oXx]=a+Ax (W 

Here, A is a constant matrix. The function Y Is determined from the 
characteristic system 

dxl dxa dx3 dY 
-=~=___=T 

Tl 73 7s 2I‘ry (17) 

aping over to a new variable y= x -f- A% and then to a system of coor- 
dinates in which one of the axes Is along the direction of the constant vec- 
tor w0 , we reduce system (17) to 

dz. 
ED da da da dY 

Ti - Ta’Z1- W& = - 73.7‘2 + OOZl =-=2rQy --T4% (W 

Then 
Y = z3-2Y3 ($9) 

where Y3 satisfies Equation (grad ya, Y’) = 0, that Is, 
the trajectory of a point moving with the velocity v' . 

Ye is constant along 
n other words, y3 

IS an arbitrary function of the first integrals of the first two equations 
of system (18). These Integrals are 

Thus, in this case Is constant, and v4 and y0 
change linear1 
~rea$ns (1 % 

The dependence of the coordinates is given by 
, we obtain trIaxwell'8 solutions 

* 
If t&=0, then all the coefficients in Equation (15) which depend on 

time must be proportional to each other, 

T4. (t) b’ (t) ai (t) 
yo”’ (t) = - r = - = __ 

P ai 

(from the condition of the finltude of mass we obtain y z 0). Then the 
potential is determined as Y = Y1+ Yz , where 
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Y, = pijxixj + qixi + r 

(now PiJ, qI and r are constant), and yz is determined from Equation 

(grad I,, a + yx + ra [Q x xl) = - 2yYy, 

In this case we find the function y. in the same way as for the case 
w,# 0 . 

Thus, for .uI~- 0 , that is, In the absence of a constant component of 
rotation, oscillatory solutions are possible for y4, y and YO . The den- 
sity, velocity and temperature are found, as before, from the Expressions(4). 

To sum up the above, we state that for Internal force fields independent 
of time, thefr form can be determined and the flows corresponding to those 
fields found. The solution may be devided into two classes: for constant 
rotation of the gas, the parameters yl and yO are linear in time; in the 
absence of a constant component of angular velocity, oscillatory solutions 
for Y , y4 and y. are possible. 

The calculations can be significantly simplified If one considers sepa- 
rately translational motion, radial expansion, or solid body-like rotation 
of the gas. 

In conclusion, the author thanks M.N.Kogan for suggesting’the problem and 
for discussions. 
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